Format

Send to

Choose Destination
Curr Opin Microbiol. 2018 Oct;45:61-69. doi: 10.1016/j.mib.2018.02.010. Epub 2018 Mar 10.

RiPP antibiotics: biosynthesis and engineering potential.

Author information

1
Department of Chemistry, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States.
2
Department of Chemistry, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States; Department of Microbiology, University of Illinois, 600 S Mathews Ave, Urbana, IL 61801, United States. Electronic address: douglasm@illinois.edu.

Abstract

The threat of antibiotic resistant bacterial infections continues to underscore the need for new treatment options. Historically, small molecule metabolites from microbes have provided a rich source of antibiotic compounds, and as a result, significant effort has been invested in engineering the responsible biosynthetic pathways to generate novel analogs with attractive pharmacological properties. Unfortunately, biosynthetic stringency has limited the capacity of non-ribosomal peptide synthetases and polyketide synthases from producing substantially different analogs in large numbers. Another class of natural products, the ribosomally synthesized and post-translationally modified peptides (RiPPs), have rapidly expanded in recent years with many natively displaying potent antibiotic activity. RiPP biosynthetic pathways are modular and intrinsically tolerant to alternative substrates. Several prominent RiPPs with antibiotic activity will be covered in this review with a focus on their biosynthetic plasticity. While only a few RiPP enzymes have been thoroughly investigated mechanistically, this knowledge has already been harnessed to generate new-to-nature compounds. Through the use of synthetic biology approaches, on-going efforts in RiPP engineering hold great promise in unlocking the potential of this natural product class.

PMID:
29533845
PMCID:
PMC6131089
DOI:
10.1016/j.mib.2018.02.010
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center