Format

Send to

Choose Destination
Sci Rep. 2018 Mar 12;8(1):4380. doi: 10.1038/s41598-018-22431-5.

Improved water use efficiency and shorter life cycle of Nicotiana tabacum due to modification of guard and vascular companion cells.

Author information

1
Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
2
Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität, Universitätsstraße 1, 40225, Düsseldorf, Germany.
3
Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina. drincovich@cefobi-conicet.gov.ar.

Abstract

Severe droughts are predicted for the twenty-first century, which contrast with the increased demand for plant materials. Thus, to sustain future generations, a great challenge is to improve crop yield and water use efficiency (WUE), which is the carbon gained per water lost. Here, expression of maize NADP-malic enzyme (NADP-ME) in the guard and vascular companion cells of Nicotiana tabacum results in enhanced WUE, earlier flowering and shorter life cycle. Transgenic lines exhibit reduced stomatal aperture than wild-type (WT). Nevertheless, an increased net CO2 fixation rate is observed, which results in less water consumption and more biomass production per water used. Transgenic lines export sugars to the phloem at higher rate than WT, which leads to higher sugars levels in phloem exudates and veins. Leaf quantitative proteomic profiling revealed drastic differences in proteins related to cell cycle, flowering, hormone signaling and carbon metabolism between transgenic lines and WT. We propose that the increased sugar export from leaves in the transgenic lines alleviates sugar negative feedback on photosynthesis and thus, stomatal closure takes place without a penalty in CO2 assimilation rate. This results in improved WUE and accelerated overall life cycle, key traits for plant productivity in the near future world.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center