Format

Send to

Choose Destination
Eur J Immunol. 2018 Jun;48(6):937-949. doi: 10.1002/eji.201747162. Epub 2018 Apr 30.

Miscarriage induced by adoptive transfer of dendritic cells and invariant natural killer T cells into mice.

Author information

1
Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.
2
Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan.

Abstract

Unexpected fetal loss is one of the common complications of pregnancy; however, the pathogenesis of many miscarriages, particularly those not associated with infections, is unknown. We previously found that activated DEC-205+ dendritic cells (DCs) and NK1.1+ invariant natural killer T (iNKT) cells are recruited into the myometrium of mice when miscarriage is induced by the intraperitoneal administration of α-galactosylceramide (α-GalCer). Here we demonstrate that the adoptive transfer of DEC-205+ bone marrow-derived DCs cocultured with α-GalCer (DEC-205+ BMDCs-c/w-α-GalCer) directly induced marked fetal loss by syngeneic pregnant C57BL/6 (B6) mice and allogeneic mice (B6 (♀) × BALB/c (♂)), which was accompanied by the accumulation of activated iNKT cells in the myometrium. Further, the adoptive transfer of NK1.1+ iNKT cells obtained from B6 mice injected with α-GalCer facilitated miscarriages in syngeneic Jα18(-/-) (iNKT cell-deficient) mice. These results suggest that DEC-205+ DCs and NK1.1+ iNKT cells play crucial roles required for the initiation of fetal loss associated with stimulation by glycolipid antigens and sterile inflammation.

KEYWORDS:

Adoptive transfer; Dendritic cell (DC); Invariant NKT cell (iNKT cell); Miscarriage; α-galactosylceramide (α-GalCer)

PMID:
29520760
DOI:
10.1002/eji.201747162
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center