Exploring the Pharmacokinetic/Pharmacodynamic Relationship of Relebactam (MK-7655) in Combination with Imipenem in a Hollow-Fiber Infection Model

Antimicrob Agents Chemother. 2018 Apr 26;62(5):e02323-17. doi: 10.1128/AAC.02323-17. Print 2018 May.

Abstract

Resistance to antibiotics among bacterial pathogens is rapidly spreading, and therapeutic options against multidrug-resistant bacteria are limited. There is an urgent need for new drugs, especially those that can circumvent the broad array of resistance pathways that bacteria have evolved. In this study, we assessed the pharmacokinetic/pharmacodynamic relationship of the novel β-lactamase inhibitor relebactam (REL; MK-7655) in a hollow-fiber infection model. REL is intended for use with the carbapenem β-lactam antibiotic imipenem for the treatment of Gram-negative bacterial infections. In this study, we used an in vitro hollow-fiber infection model to confirm the efficacy of human exposures associated with the phase 2 doses (imipenem at 500 mg plus REL at 125 or 250 mg administered intravenously every 6 h as a 30-min infusion) against imipenem-resistant strains of Pseudomonas aeruginosa and Klebsiella pneumoniae Dose fractionation experiments confirmed that the pharmacokinetic parameter that best correlated with REL activity is the area under the concentration-time curve, consistent with findings in a murine pharmacokinetic/pharmacodynamic model. Determination of the pharmacokinetic/pharmacodynamic relationship between β-lactam antibiotics and β-lactamase inhibitors is complex, as there is an interdependence between their respective exposure-response relationships. Here, we show that this interdependence could be captured by treating the MIC of imipenem as dynamic: it changes with time, and this change is directly related to REL levels. For the strains tested, the percentage of the dosing interval time that the concentration remains above the dynamic MIC for imipenem was maintained at the carbapenem target of 30 to 40%, required for maximum efficacy, for imipenem at 500 mg plus REL at 250 mg.

Keywords: antibiotic resistance; hollow-fiber model; pharmacokinetic/pharmacodynamic; relebactam; β-lactamase inhibitor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Azabicyclo Compounds / pharmacology
  • Drug Resistance, Multiple, Bacterial
  • Gram-Negative Bacterial Infections / drug therapy
  • Gram-Negative Bacterial Infections / microbiology
  • Imipenem / pharmacology*
  • Klebsiella pneumoniae / drug effects
  • Mice
  • Microbial Sensitivity Tests
  • beta-Lactamase Inhibitors / pharmacology*

Substances

  • Azabicyclo Compounds
  • beta-Lactamase Inhibitors
  • Imipenem
  • relebactam