Particulate matter, the newborn methylome, and cardio-respiratory health outcomes in childhood

Environ Epigenet. 2016 Jun 12;2(2):dvw005. doi: 10.1093/eep/dvw005. eCollection 2016 Apr.

Abstract

Ambient air pollution is associated with adverse health outcomes including cardio-respiratory diseases. Epigenetic mechanisms such as DNA methylation may play a role in driving such associations. We investigated the effects of prenatal particulate matter (PM) exposure on DNA methylation of 178,309 promoter regions in 240 newborns using the Infinium HumanMethylation450 BeadChip, using a generalized linear regression model with a quasi-binomial link family, adjusted for gender, plate, and cell types. PM-associated CpG loci were then investigated for their associations with childhood asthma, carotid intima-media thickness (CIMT), and blood pressure (BP) using logistic or linear regression. Thirty-one loci were associated with either PM10 or PM2.5 using FDR-corrected p-values of less than 0.15. Two loci were evaluated for replication in a separate population of 280 Children's Health Study (CHS) subjects using Pyrosequencing, of which one successfully replicated (COLEC11 cg03579365). Three of the 31 loci were also associated with physician-diagnosed asthma at 6 years old, two were associated with CIMT and one with systolic BP at 10 years old. A higher methylation level in TM9SF2 (cg02015529) and UBE2S (cg00035623), respectively, was associated with a 2SD increase in prenatal PM and was also associated with 36% and 98% increased odds of asthma; whereas methylation of TDRD6 (cg22329831) was negatively associated with PM and a 24% decreased odds of asthma. Prenatal PM exposure was associated with altered DNA methylation in newborn blood in a small number of gene promoters, some of which were also associated with cardio-respiratory health outcomes later in childhood. Keywords: methylation, particulate matter, air pollution, asthma, cardiovascular.