Format

Send to

Choose Destination
Nature. 2018 Mar 8;555(7695):256-259. doi: 10.1038/nature25784. Epub 2018 Feb 28.

The SMAD2/3 interactome reveals that TGFβ controls m6A mRNA methylation in pluripotency.

Author information

1
Wellcome Trust-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
2
Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.
3
Department of Molecular Biology, Radboud University, Nijmegen 6525GA, The Netherlands.
4
Francis Crick Institute and Department of Molecular Neuroscience, University College London, London NW1 1AT, UK.
5
Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.

Abstract

The TGFβ pathway has essential roles in embryonic development, organ homeostasis, tissue repair and disease. These diverse effects are mediated through the intracellular effectors SMAD2 and SMAD3 (hereafter SMAD2/3), whose canonical function is to control the activity of target genes by interacting with transcriptional regulators. Therefore, a complete description of the factors that interact with SMAD2/3 in a given cell type would have broad implications for many areas of cell biology. Here we describe the interactome of SMAD2/3 in human pluripotent stem cells. This analysis reveals that SMAD2/3 is involved in multiple molecular processes in addition to its role in transcription. In particular, we identify a functional interaction with the METTL3-METTL14-WTAP complex, which mediates the conversion of adenosine to N6-methyladenosine (m6A) on RNA. We show that SMAD2/3 promotes binding of the m6A methyltransferase complex to a subset of transcripts involved in early cell fate decisions. This mechanism destabilizes specific SMAD2/3 transcriptional targets, including the pluripotency factor gene NANOG, priming them for rapid downregulation upon differentiation to enable timely exit from pluripotency. Collectively, these findings reveal the mechanism by which extracellular signalling can induce rapid cellular responses through regulation of the epitranscriptome. These aspects of TGFβ signalling could have far-reaching implications in many other cell types and in diseases such as cancer.

Comment in

PMID:
29489750
PMCID:
PMC5951268
DOI:
10.1038/nature25784
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center