Send to

Choose Destination
Bioinformatics. 2018 Jul 15;34(14):2449-2456. doi: 10.1093/bioinformatics/bty087.

A new approach for interpreting Random Forest models and its application to the biology of ageing.

Author information

School of Computing, University of Kent, Canterbury, Kent, UK.
Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.



This work uses the Random Forest (RF) classification algorithm to predict if a gene is over-expressed, under-expressed or has no change in expression with age in the brain. RFs have high predictive power, and RF models can be interpreted using a feature (variable) importance measure. However, current feature importance measures evaluate a feature as a whole (all feature values). We show that, for a popular type of biological data (Gene Ontology-based), usually only one value of a feature is particularly important for classification and the interpretation of the RF model. Hence, we propose a new algorithm for identifying the most important and most informative feature values in an RF model.


The new feature importance measure identified highly relevant Gene Ontology terms for the aforementioned gene classification task, producing a feature ranking that is much more informative to biologists than an alternative, state-of-the-art feature importance measure.

Availability and implementation:

The dataset and source codes used in this paper are available as 'Supplementary Material' and the description of the data can be found at:

Supplementary information:

Supplementary data are available at Bioinformatics online.

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center