Format

Send to

Choose Destination
Water Res. 2018 May 15;135:112-121. doi: 10.1016/j.watres.2018.02.007. Epub 2018 Feb 8.

Improving water quality using settleable microalga Ettlia sp. and the bacterial community in freshwater recirculating aquaculture system of Danio rerio.

Author information

1
Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
2
Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
3
Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea. Electronic address: cyahn@kribb.re.kr.
4
Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea. Electronic address: heemock@kribb.re.kr.

Abstract

A highly settleable microalga, Ettlia sp., was applied to a freshwater recirculating aquaculture system (RAS) of Danio rerio to improve the treatment of nitrogenous compounds. The growth characteristics of the microalgae, water quality parameters, and bacterial communities were monitored for 73 days. In the treatment RAS, the inoculated Ettlia sp. grew up to 1.26 g/L and dominated (>99%) throughout the experiment, whereas naturally occurring microalgae grew to 0.57 g/L in the control RAS. The nitrate, nitrite, and ammonium concentrations in the treatment RAS were reduced by 50.1%, 73.3%, and 24.2%, respectively, compared to the control RAS. A bacterial community analysis showed that Rhodospirillales, Phycisphaerae, Chlorobiales, and Burkholderiales were the major bacterial groups in the later phase of the treatment RAS. Meanwhile, a network analysis among the Ettlia sp., bacterial groups, and environmental parameters, revealed that the bacterial groups played key roles in both water quality improvement and Ettlia sp. growth. In conclusion, the inoculation and growth of the Ettlia sp. and its associated bacteria in the RAS produced beneficial effects on the water quality by reducing the nitrogenous compounds and providing a favorable environment for certain bacterial groups to further improve water quality.

KEYWORDS:

Algae-bacteria interaction; Ettlia sp.; Nitrate; Recirculating aquaculture systems; Settleable microalgae; Water quality

PMID:
29459117
DOI:
10.1016/j.watres.2018.02.007
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center