Send to

Choose Destination
J Neurotrauma. 2018 Jul 1;35(13):1467-1480. doi: 10.1089/neu.2017.5374. Epub 2018 Apr 17.

Central Infusion of Insulin-Like Growth Factor-1 Increases Hippocampal Neurogenesis and Improves Neurobehavioral Function after Traumatic Brain Injury.

Author information

Spinal Cord and Brain Injury Research Center, University of Kentucky , Lexington, Kentucky.


Traumatic brain injury (TBI) produces neuronal dysfunction and cellular loss that can culminate in lasting impairments in cognitive and motor abilities. Therapeutic agents that promote repair and replenish neurons post-TBI hold promise in improving recovery of function. Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor capable of mediating neuroprotective and neuroplasticity mechanisms. Targeted overexpression of IGF-1 enhances the generation of hippocampal newborn neurons in brain-injured mice; however, the translational neurogenic potential of exogenously administered IGF-1 post-TBI remains unknown. In a mouse model of controlled cortical impact, continuous intracerebroventricular infusion of recombinant human IGF-1 (hIGF) for 7 days, beginning 15 min post-injury, resulted in a dose-dependent increase in the number of immature neurons in the hippocampus. Infusion of 10 μg/day of IGF-1 produced detectable levels of hIGF-1 in the cortex and hippocampus and a concomitant increase in protein kinase B activation in the hippocampus. Both motor function and cognition were improved over 7 days post-injury in IGF-1-treated cohorts. Vehicle-treated brain-injured mice showed reduced hippocampal immature neuron density relative to sham controls at 7 days post-injury. In contrast, the density of hippocampal immature neurons in brain-injured mice receiving acute onset IGF-1 infusion was significantly higher than in injured mice receiving vehicle and equivalent to that in sham-injured control mice. Importantly, the neurogenic effect of IGF-1 was maintained with as much as a 6-h delay in the initiation of infusion. These data suggest that central infusion of IGF-1 enhances the generation of immature neurons in the hippocampus, with a therapeutic window of at least 6 h post-injury, and promotes neurobehavioral recovery post-TBI.


IGF-1; TBI; cognition; hippocampus; neurogenesis


Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center