Format

Send to

Choose Destination
J Vis Exp. 2018 Feb 6;(132). doi: 10.3791/57312.

In Vivo Imaging of Muscle-tendon Morphogenesis in Drosophila Pupae.

Author information

1
Muscle Dynamics Group, Max Planck Institute of Biochemistry; lemke@biochem.mpg.de.
2
Muscle Dynamics Group, Max Planck Institute of Biochemistry; Aix Marseille University, CNRS, IBDM; frank.schnorrer@univ-amu.fr.

Abstract

Muscles together with tendons and the skeleton enable animals including humans to move their body parts. Muscle morphogenesis is highly conserved from animals to humans. Therefore, the powerful Drosophila model system can be used to study concepts of muscle-tendon development that can also be applied to human muscle biology. Here, we describe in detail how morphogenesis of the adult muscle-tendon system can be easily imaged in living, developing Drosophila pupae. Hence, the method allows investigating proteins, cells and tissues in their physiological environment. In addition to a step-by-step protocol with helpful tips, we provide a comprehensive overview of fluorescently tagged marker proteins that are suitable for studying the muscle-tendon system. To highlight the versatile applications of the protocol, we show example movies ranging from visualization of long-term morphogenetic events - occurring on the time scale of hours and days - to visualization of short-term dynamic processes like muscle twitching occurring on time scale of seconds. Taken together, this protocol should enable the reader to design and perform live-imaging experiments for investigating muscle-tendon morphogenesis in the intact organism.

Supplemental Content

Full text links

Icon for MyJove Corporation Icon for PubMed Central
Loading ...
Support Center