Format

Send to

Choose Destination
Molecules. 2018 Feb 8;23(2). pii: E361. doi: 10.3390/molecules23020361.

Antibacterial Activities of Azole Complexes Combined with Silver Nanoparticles.

Author information

1
Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia. nj.bello1211@uniandes.edu.co.
2
Eléctrica y Electrónica, Centro de Microelectrónica, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia. hf.pastrana122@uniandes.edu.co.
3
Laboratorio de Micología y Fitopatología, Departamento de Ciencias Biológicas, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia. manuel.garavitodiago@yale.edu.
4
Eléctrica y Electrónica, Centro de Microelectrónica, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia. a-avila@uniandes.edu.co.
5
Laboratorio de Micología y Fitopatología, Departamento de Ciencias Biológicas, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia. acelis@uniandes.edu.co.
6
Grupo de Química Inorgánica y Materiales Moleculares, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile. alvaro.munoz@uautonoma.cl.
7
Laboratorio de Micología y Fitopatología, Departamento de Ciencias Biológicas, Universidad de Los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia. srestrep@uniandes.edu.co.
8
Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A-12, Bogotá 111711, Colombia. jj.hurtado@uniandes.edu.co.

Abstract

Growing antimicrobial resistance is considered a potential threat for human health security by health organizations, such as the WHO, CDC and FDA, pointing to MRSA as an example. New antibacterial drugs and complex derivatives are needed to combat the development of bacterial resistance. Six new copper and cobalt complexes of azole derivatives were synthesized and isolated as air-stable solids and characterized by melting point analyses, elemental analyses, thermogravimetric analyses (TGA), and infrared and ultraviolet/visible spectroscopy. The analyses and spectral data showed that the complexes had 1:1 (M:L) stoichiometries and tetrahedral geometries, the latter being supported by DFT calculations. The antibacterial activities of the metal complexes by themselves and combined with silver nanoparticles (AgNPs; 2 μg mL-1) were assessed in vitro by broth microdilution assays against eight bacterial strains of clinical relevance. The results showed that the complexes alone exhibited moderate antibacterial activities. However, when the metal complexes were combined with AgNPs, their antibacterial activities increased (up to 10-fold in the case of complex 5), while human cell viabilities were maintained. The minimum inhibitory concentration (MIC50) values were in the range of 25-500 μg mL-1. This study thus presents novel approaches for the design of materials for fighting bacterial resistance. The use of azole complexes combined with AgNPs provides a new alternative against bacterial infections, especially when current treatments are associated with the rapid development of antibiotic resistance.

KEYWORDS:

antibacterial activity; antibacterial resistance; azole ligands; copper and cobalt complexes; cytotoxicity; silver nanoparticles

PMID:
29419803
PMCID:
PMC6017516
DOI:
10.3390/molecules23020361
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center