Role of cone-beam computed tomography with a large field of view in Goldenhar syndrome

Am J Orthod Dentofacial Orthop. 2018 Feb;153(2):269-277. doi: 10.1016/j.ajodo.2017.06.024.

Abstract

Introduction: Goldenhar syndrome is a rare disease with hemifacial microsomia and craniofacial disorders originating from the first and second branchial arches, such as ocular, auricular, and vertebral anomalies. The complexity and variety of the ways in which the disease presents itself usually need several examinations. In this study, we aimed to evaluate both craniofacial and vertebral skeletal anomalies and asymmetries between the nonaffected and affected sides in patients with Goldenhar syndrome by using cone-beam computed tomography.

Methods: Ten patients (7-14 years old; 6 boys, 4 girls) were evaluated via NewTom 5G cone-beam computed tomography (QR srl, Verona, Italy) with a large field of view (18 × 16 cm). Ten anatomic facial landmarks were identified to measure the following distances bilaterally: sella turcica (ST)-mandibular angle, ST-condyle, ST-mastoid, ST-mental foramen, ST-fronto zygomatic suture, ST-zygomatic temporal suture, ST-zygomatic facial foramen, ST-sphenopalatine fossa, mandibular angle-mandibular symphysis, and mandibular angle-condyle. The following 6 volumes were calculated bilaterally: orbit, maxillary sinus, condyle, external ear canal, middle ear, and internal auditory canal. These measurements were performed to assess skeletal asymmetries to compare the nonaffected side with the affected side by the Wilcoxon test. Cervical spine anomalies were classified into fusion anomalies and posterior arch deficiencies.

Results: All patients showed a deficit of skeletal development on the affected side. Statistically significant differences (0.001 ≤ P value ≤ 0.043) between the nonaffected and affected sides were recorded for all measurements, except for ST-frontozygomatic suture, mandibular angle-mandibular symphysis, and maxillary sinus volume. Vertebral fusion anomalies and posterior arch deficiencies were found in 7 and 4 patients, respectively.

Conclusions: Cone-beam computed tomography with a large field of view was able to accurately identify craniofacial and vertebral skeletal anomalies, and to quantify asymmetries between the nonaffected and affected sides for an efficient maxillofacial treatment planning.

MeSH terms

  • Adolescent
  • Child
  • Cone-Beam Computed Tomography* / methods
  • Craniofacial Abnormalities / diagnostic imaging
  • Female
  • Foramen Magnum / diagnostic imaging
  • Goldenhar Syndrome / diagnostic imaging*
  • Humans
  • Male
  • Mandible / diagnostic imaging
  • Mandibular Condyle / diagnostic imaging
  • Mastoid / diagnostic imaging
  • Sella Turcica / diagnostic imaging
  • Spine / diagnostic imaging
  • Zygoma / diagnostic imaging