Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice

Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):1635-1640. doi: 10.1073/pnas.1712648115. Epub 2018 Jan 31.

Abstract

Mutations in LRRK2 are known to be the most common genetic cause of sporadic and familial Parkinson's disease (PD). Multiple lines of LRRK2 transgenic or knockin mice have been developed, yet none exhibit substantial dopamine (DA)-neuron degeneration. Here we develop human tyrosine hydroxylase (TH) promoter-controlled tetracycline-sensitive LRRK2 G2019S (GS) and LRRK2 G2019S kinase-dead (GS/DA) transgenic mice and show that LRRK2 GS expression leads to an age- and kinase-dependent cell-autonomous neurodegeneration of DA and norepinephrine (NE) neurons. Accompanying the loss of DA neurons are DA-dependent behavioral deficits and α-synuclein pathology that are also LRRK2 GS kinase-dependent. Transmission EM reveals that that there is an LRRK2 GS kinase-dependent significant reduction in synaptic vesicle number and a greater abundance of clathrin-coated vesicles in DA neurons. These transgenic mice indicate that LRRK2-induced DA and NE neurodegeneration is kinase-dependent and can occur in a cell-autonomous manner. Moreover, these mice provide a substantial advance in animal model development for LRRK2-associated PD and an important platform to investigate molecular mechanisms for how DA neurons degenerate as a result of expression of mutant LRRK2.

Keywords: LRRK2; Parkinson’s disease; neurodegeneration; α-synuclein.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Age Factors
  • Animals
  • Behavior, Animal
  • Disease Models, Animal*
  • Dopamine / metabolism*
  • Dopaminergic Neurons / metabolism
  • Dopaminergic Neurons / pathology*
  • Humans
  • Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 / physiology*
  • Male
  • Mice
  • Mice, Transgenic
  • Motor Activity
  • Mutation
  • Neurodegenerative Diseases / metabolism
  • Neurodegenerative Diseases / pathology*
  • Norepinephrine / metabolism*
  • alpha-Synuclein / metabolism

Substances

  • alpha-Synuclein
  • Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
  • Lrrk2 protein, mouse
  • Dopamine
  • Norepinephrine