Format

Send to

Choose Destination
Adv Mater. 2018 Mar;30(13):e1706561. doi: 10.1002/adma.201706561. Epub 2018 Jan 30.

High Detectivity and Transparent Few-Layer MoS2 /Glassy-Graphene Heterostructure Photodetectors.

Author information

1
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
2
Department of Chemistry, University College London, 20 Gordon St, Bloomsbury, London, WC1H 0AJ, UK.
3
College of Physics, Optoelectronics and Energy and Collaborative Innovation Centre of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
4
London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
5
United States Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783-1197, USA.

Abstract

Layered van der Waals heterostructures have attracted considerable attention recently, due to their unique properties both inherited from individual two-dimensional (2D) components and imparted from their interactions. Here, a novel few-layer MoS2 /glassy-graphene heterostructure, synthesized by a layer-by-layer transfer technique, and its application as transparent photodetectors are reported for the first time. Instead of a traditional Schottky junction, coherent ohmic contact is formed at the interface between the MoS2 and the glassy-graphene nanosheets. The device exhibits pronounced wavelength selectivity as illuminated by monochromatic lights. A responsivity of 12.3 mA W-1 and detectivity of 1.8 × 1010 Jones are obtained from the photodetector under 532 nm light illumination. Density functional theory calculations reveal the impact of specific carbon atomic arrangement in the glassy-graphene on the electronic band structure. It is demonstrated that the band alignment of the layered heterostructures can be manipulated by lattice engineering of 2D nanosheets to enhance optoelectronic performance.

KEYWORDS:

MoS2; density functional theory; glassy-graphene; heterostructures; photodetectors

PMID:
29380432
DOI:
10.1002/adma.201706561

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center