Format

Send to

Choose Destination
Cancer Sci. 2018 Mar;109(3):854-862. doi: 10.1111/cas.13509. Epub 2018 Feb 21.

Development of a risk prediction model for lung cancer: The Japan Public Health Center-based Prospective Study.

Author information

1
Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan.

Abstract

Although the impact of tobacco consumption on the occurrence of lung cancer is well-established, risk estimation could be improved by risk prediction models that consider various smoking habits, such as quantity, duration, and time since quitting. We constructed a risk prediction model using a population of 59 161 individuals from the Japan Public Health Center (JPHC) Study Cohort II. A parametric survival model was used to assess the impact of age, gender, and smoking-related factors (cumulative smoking intensity measured in pack-years, age at initiation, and time since cessation). Ten-year cumulative probability of lung cancer occurrence estimates were calculated with consideration of the competing risk of death from other causes. Finally, the model was externally validated using 47 501 individuals from JPHC Study Cohort I. A total of 1210 cases of lung cancer occurred during 986 408 person-years of follow-up. We found a dose-dependent effect of tobacco consumption with hazard ratios for current smokers ranging from 3.78 (2.00-7.16) for cumulative consumption ≤15 pack-years to 15.80 (9.67-25.79) for >75 pack-years. Risk decreased with time since cessation. Ten-year cumulative probability of lung cancer occurrence estimates ranged from 0.04% to 11.14% in men and 0.07% to 6.55% in women. The model showed good predictive performance regarding discrimination (cross-validated c-index = 0.793) and calibration (cross-validated χ2 = 6.60; P-value = .58). The model still showed good discrimination in the external validation population (c-index = 0.772). In conclusion, we developed a prediction model to estimate the probability of developing lung cancer based on age, gender, and tobacco consumption. This model appears useful in encouraging high-risk individuals to quit smoking and undergo increased surveillance.

KEYWORDS:

Cohort study; competing risks; lung cancer; risk prediction model; tobacco smoking

PMID:
29345859
PMCID:
PMC5834815
DOI:
10.1111/cas.13509
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center