Send to

Choose Destination
IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):84-95. doi: 10.1109/TNSRE.2017.2776149.

A Novel Multi-Class EEG-Based Sleep Stage Classification System.


Sleep stage classification is one of the most critical steps in effective diagnosis and the treatment of sleep-related disorders. Visual inspection undertaken by sleep experts is a time-consuming and burdensome task. A computer-assisted sleep stage classification system is thus essential for both sleep-related disorders diagnosis and sleep monitoring. In this paper, we propose a system to classify the wake and sleep stages with high rates of sensitivity and specificity. The EEG signals of 25 subjects with suspected sleep-disordered breathing, and the EEG signals of 20 healthy subjects from three data sets are used. Every EEG epoch is decomposed into eight subband epochs each of which has a frequency band pertaining to one EEG rhythm (i.e., delta, theta, alpha, sigma, beta 1, beta 2, gamma 1, or gamma 2). Thirteen features are extracted from each subband epoch. Therefore, 104 features are totally obtained for every EEG epoch. The Kruskal-Wallis test is used to examine the significance of the features. Non-significant features are discarded. The minimal-redundancy-maximal-relevance feature selection algorithm is then used to eliminate redundant and irrelevant features. The features selected are classified by a random forest classifier. To set the system parameters and to evaluate the system performance, nested 5-fold cross-validation and subject cross-validation are performed. The performance of our proposed system is evaluated for different multi-class classification problems. The minimum overall accuracy rates obtained are 95.31% and 86.64% for nested 5-fold and subject cross-validation, respectively. The system performance is promising in terms of the accuracy, sensitivity, and specificity rates compared with the ones of the state-of-the-art systems. The proposed system can be used in health care applications with the aim of improving sleep stage classification.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center