Send to

Choose Destination
J Chem Inf Model. 2018 Feb 26;58(2):287-296. doi: 10.1021/acs.jcim.7b00650. Epub 2018 Jan 29.

KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks.

Author information

Computational Biophysics Laboratory, Universitat Pompeu Fabra , Parc de Recerca Biomèdica de Barcelona, Carrer del Dr. Aiguader 88, Barcelona 08003, Spain.
Institució Catalana de Recerca i Estudis Avançats (ICREA) , Passeig Lluis Companys 23, 08010 Barcelona, Spain.


Accurately predicting protein-ligand binding affinities is an important problem in computational chemistry since it can substantially accelerate drug discovery for virtual screening and lead optimization. We propose here a fast machine-learning approach for predicting binding affinities using state-of-the-art 3D-convolutional neural networks and compare this approach to other machine-learning and scoring methods using several diverse data sets. The results for the standard PDBbind (v.2016) core test-set are state-of-the-art with a Pearson's correlation coefficient of 0.82 and a RMSE of 1.27 in pK units between experimental and predicted affinity, but accuracy is still very sensitive to the specific protein used. KDEEP is made available via for users to test easily their own protein-ligand complexes, with each prediction taking a fraction of a second. We believe that the speed, performance, and ease of use of KDEEP makes it already an attractive scoring function for modern computational chemistry pipelines.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center