Format

Send to

Choose Destination
Colloids Surf B Biointerfaces. 2018 Mar 1;163:201-208. doi: 10.1016/j.colsurfb.2017.12.037. Epub 2017 Dec 20.

Gold nanoparticle contact point density controls microbial adhesion on gold surfaces.

Author information

1
Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Bio Pilot Plant, Adolf-Reichwein-Straße 23, 07745, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany.
2
Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany.
3
Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany.
4
Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Bio Pilot Plant, Adolf-Reichwein-Straße 23, 07745, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany.
5
Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Faculty of Physics and Astronomy, Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany; Jena School for Microbial Communication (JSMC), Neugasse 23, 07743, Jena, Germany. Electronic address: k.jandt@uni-jena.de.

Abstract

Surface structures in the nanometer range emerge as the next evolutionary breakthrough in the design of biomaterials with antimicrobial properties. However, in order to advance the application of surface nanostructuring strategies in medical implants, the very nature of the microbial repealing mechanism has yet to be understood. Herein, we demonstrate that the random immobilization of gold nanoparticles (AuNPs) on a material's surface generates the possibility to explore microbial adhesion in dependence of contact point densities at the biointerface between the microbe, i.e., Escherichia coli and the material's surface. By optimizing the contact point density defined by individual AuNPs, yet keeping the surface chemistry unchanged as evidenced by X-ray photoelectron spectroscopy, we show that the initial microbial adhesion can be successfully reduced up to 50%, compared to control (unstructured) surfaces. Furthermore, we observed a decrease in the size of microbial cells adhered to nanostructured surfaces. The results show that the spatial distance between the contact points plays a crucial role in regulating microbial adhesion, thus advancing our understanding of the microbial adhesion mechanism on nanostructured surfaces. We suggest that the introduced strategy for nanostructuring materials surfaces opens a research direction for highly microbial-resistant biomaterials.

KEYWORDS:

Contact point density; FIB-SEM; Immobilized gold nanoparticles; Initial microbial adhesion; Interaction at the biointerface; Nanostructured biomaterials

PMID:
29304434
DOI:
10.1016/j.colsurfb.2017.12.037
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center