Format

Send to

Choose Destination
Molecules. 2018 Jan 2;23(1). pii: E90. doi: 10.3390/molecules23010090.

Biotinylated Cyclooligosaccharides for Paclitaxel Solubilization.

Author information

1
Institute for Ubiquitous Information Technology and Applications (UBITA) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea. echo@konkuk.ac.kr.
2
Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MBRC) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea. shjung@konkuk.ac.kr.

Abstract

The poor water solubility of paclitaxel causes significant problems in producing cancer therapeutic formulations. Here, we aimed to solubilize paclitaxel using biocompatible cyclic carbohydrates. Generally recognized as safe, labeled β-cyclodextrin (β-CD), a cyclic α-1,4-glucan consisting of seven glucoses, was prepared, and bio-sourced cyclosophoraoses (CyS), which are unbranched cyclic β-1,2-glucans with 17-23 glucose units, were purified using various chromatographic methods from Rhizobium leguminosarum cultural broth. For effective targeting, CyS and β-CD were modified with a biotinyl moiety in a reaction of mono-6-amino CyS and mono-6-amino-β-CD with N-hydroxysuccinimide ester of biotinamidohexanoic acid. Interestingly, the aqueous solubility of paclitaxel was enhanced 10.3- and 3.7-fold in the presence of biotinyl CyS and biotinyl β-CD, respectively. These findings suggest that biotin-appended cyclooligosaccharides can be applied to improve the delivery of paclitaxel.

KEYWORDS:

biotin; cyclooligosaccharide; paclitaxel; solubilization

PMID:
29301309
PMCID:
PMC6017118
DOI:
10.3390/molecules23010090
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center