Format

Send to

Choose Destination
J Am Chem Soc. 2018 Jan 31;140(4):1358-1364. doi: 10.1021/jacs.7b10430. Epub 2018 Jan 22.

Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering.

Author information

1
Department of Energy Science, Sungkyunkwan University , Suwon 16419, Korea.
2
School of Chemical Engineering, Sungkyunkwan University , Suwon 16419, Korea.
3
Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH) , Pohang 37673, Korea.

Abstract

Organic-inorganic halide perovskite is believed to be a potential candidate for high efficiency solar cells because power conversion efficiency (PCE) was certified to be more than 22%. Nevertheless, mismatch of PCE due to current density (J)-voltage (V) hysteresis in perovskite solar cells is an obstacle to overcome. There has been much lively debate on the origin of J-V hysteresis; however, effective methodology to solve the hysteric problem has not been developed. Here we report a universal approach for hysteresis-free perovskite solar cells via defect engineering. A severe hysteresis observed from the normal mesoscopic structure employing TiO2 and spiro-MeOTAD is almost removed or does not exist upon doping the pure perovskites, CH3NH3PbI3 and HC(NH2)2PbI3, and the mixed cation/anion perovskites, FA0.85MA0.15PbI2.55Br0.45 and FA0.85MA0.1Cs0.05PbI2.7Br0.3, with potassium iodide. Substantial reductions in low-frequency capacitance and bulk trap density are measured from the KI-doped perovskite, which is indicative of trap-hysteresis correlation. A series of experiments with alkali metal iodides of LiI, NaI, KI, RbI and CsI reveals that potassium ion is the right element for hysteresis-free perovskite. Theoretical studies suggest that the atomistic origin of the hysteresis of perovskite solar cells is not the migration of iodide vacancy but results from the formation of iodide Frenkel defect. Potassium ion is able to prevent the formation of Frenkel defect since K+ energetically prefers the interstitial site. A complete removal of hysteresis is more pronounced at mixed perovskite system as compared to pure perovskites, which is explained by lower formation energy of K interstitial (-0.65 V for CH3NH3PbI3 vs -1.17 V for mixed perovskite). The developed KI doping methodology is universally adapted for hysteresis-free perovskite regardless of perovskite composition and device structure.

PMID:
29300468
DOI:
10.1021/jacs.7b10430

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center