Format

Send to

Choose Destination
Small. 2018 Feb;14(8). doi: 10.1002/smll.201703312. Epub 2017 Dec 20.

2D Single-Crystalline Copper Nanoplates as a Conductive Filler for Electronic Ink Applications.

Author information

1
Applied Quantum Composites Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do, 55324, Republic of Korea.
2
School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju, 54896, Republic of Korea.
3
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.

Abstract

Large-scale 2D single-crystalline copper nanoplates (Cu NPLs) are synthesized by a simple hydrothermal method. The combination of a mild reductant, stabilizer, and shape modifier allows the dimensional control of the Cu nanocrystals from 1D nanowires (NWs) to 2D nanoplates. High-resolution transmission electron microscopy (HR-TEM) reveals that the prepared Cu NPLs have a single-crystalline structure. From the X-ray photoelectron spectroscopy (XPS) analysis, it is found that iodine plays an important role in the modification of the copper nanocrystals through the formation of an adlayer on the basal plane of the nanoplates. Cu NPLs with an average edge length of 10 μm are successfully synthesized, and these Cu NPLs are the largest copper 2D crystals synthesized by a solution-based process so far. The application of the metallic 2D crystals as a semitransparent electrode proves their feasibility as a conductive filler, exhibiting very low sheet resistance (0.4 Ω ▫-1 ) compared to Cu NWs and a transmittance near 75%. The efficient charge transport is due to the increased contact area between each Cu NPL, i.e., so-called plane contact (2D electrical contact). In addition, this type of contact enhances the current-carrying capability of the Cu NPL electrodes, implying that the large-size Cu NPLs are promising conductive fillers for printable electrode applications.

KEYWORDS:

conductive fillers; copper nanoplates; copper nanowires; dimension control; electrodes; electronic inks

PMID:
29266730
DOI:
10.1002/smll.201703312

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center