Characterisation of electron beam irradiation-immobilised laccase for application in wastewater treatment

Sci Total Environ. 2018 May 15:624:309-322. doi: 10.1016/j.scitotenv.2017.12.127. Epub 2017 Dec 16.

Abstract

Laccase from Phoma sp. UHH 5-1-03 was cross-linked to polyvinylidene fluoride membranes by electron beam irradiation. Immobilised laccase displayed a higher stability than the non-immobilised enzyme with respect to typical wastewater temperatures, and pH at a range of 5 to 9. Batch tests addressed the removal of pharmaceutically active compounds (PhACs; applied as a mixture of acetaminophen, bezafibrate, indometacin, ketoprofen, mefenamic acid, and naproxen) by both immobilised and non-immobilised laccase in municipal wastewater. High removal rates (>85%) of the most efficiently oxidised PhACs (acetaminophen and mefenamic acid) indicated a high efficiency of the immobilised laccase in wastewater. Continuous elimination of the aforementioned PhACs by the immobilised enzyme in a continuously operated diffusion basket reactor yielded a PhAC removal pattern qualitatively similar to those observed in batch tests. Clearly higher apparent Vmax values and catalytic efficiencies (in terms of both Vmax/S0.5 as well as Vmax/Km values obtained from data fitting according to the Hill and the Michaelis-Menten model, respectively) observed for acetaminophen oxidation by the immobilised compared to the non-immobilised enzyme are in support of a considerably higher functional stability of the immobilised laccase especially in wastewater. The potential influence of acetaminophen on the removal of comparatively less laccase-oxidisable water pollutants such as the antimicrobial triclosan (TCS) was investigated. TCS was increasingly removed upon increasing the initial acetaminophen concentration in immobilised as well as non-immobilised laccase reaction systems until saturation became evident. Acetaminophen was consumed and not recycled during laccase reactions, which was accompanied by the formation of various acetaminophen-TCS cross-coupling products. Nevertheless, the simultaneous presence of acetaminophen (and potentially even more pollutant removal-enhancing laccase substrates) and more recalcitrant pollutants in wastewater represents an interesting option for the efficiency enhancement of enzyme-based wastewater treatment approaches.

Keywords: Acetaminophen; Laccase immobilisation; Micro-pollutants; Pharmaceutically active compounds; Transformation products; Wastewater.