Fabrication of monolithic diamond photodetector with microlenses

Opt Express. 2017 Dec 11;25(25):31586-31594. doi: 10.1364/OE.25.031586.

Abstract

A monolithic diamond photodetector with microlenses is fabricated by etching microlens arrays (MLAs) on single crystal diamond surface and patterning tungsten electrode strips on the edge of these arrays. Firstly, compact MLAs are etched on half of diamond sample surface by thermal reflow method. Secondly, via magnetron sputtering technique, two sets of interdigitated tungsten electrodes are patterned on the sample surface, one set is on the edge of MLAs, the other set is on the planar area. The optoelectronic performances of photodetectors have been investigated and indicated that the photocurrent of microlens photodetector increases by 74.8 percent at 10 V under 220 nm UV light illumination by comparing with that in planar case. Simulations of photodetectors' electrical and optical properties have been carried out, illustrating an improvement of charge collection ability and light absorption efficiency in microlens case. Furthermore, the present device structure can be extended to other semiconductor photodetectors.