Format

Send to

Choose Destination
An Acad Bras Cienc. 2017 Oct-Dec;89(4):2805-2815. doi: 10.1590/0001-3765201720160660. Epub 2017 Dec 7.

Evaluation of phenolic compounds and lipid-lowering effect of Morus nigra leaves extract.

Author information

1
Programa de Pós-Graduação em Química, Departamento de Química, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89030-903 Blumenau, SC, Brazil.
2
Departamento de Ciências Naturais, Laboratório de Avaliação de Substâncias Bioativas, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89030-903 Blumenau, SC, Brazil.
3
Laboratório de Cromatografia, Universidade Regional de Blumenau, Rua São Paulo, 3250, 89030-000 Blumenau, SC, Brazil.

Abstract

Morus nigra L. (Moraceae) is a tree known as black mulberry and the leaves are used in folk medicine in the treatment of diabetes, high cholesterol and menopause symptoms. The aim of this study was to evaluate the M. nigra leaves phytochemical profile in different extractions and the hypolipidemic effect of the infusion comparing to the fenofibrate. Morus nigra infusion (MN) showed higher amounts of phenolics and flavonoids (83.85 mg/g and 79.96 µg/g, respectively), as well as antioxidant activity (83.85%) than decoction or hydromethanolic extracts. Although, decoction showed the best result for ascorbic acid (4.35 mg/100 g) than hydromethanolic or infusion (2.51 or 2.13 mg/100 g, respectively). The phenolic acids gallic, chlorogenic and caffeic and the flavonoids quercetin, rutin and catechin were found in the M. nigra extracts. Hyperlipidemic rats treated with 100, 200 or 400 mg/kg of MN decreased serum cholesterol, triglycerides and normalized lipoproteins. Furthermore, MN inhibited lipid peroxidation in liver, kidney and brain of hyperlipidemic rats. This study provides evidence that M. nigra leaves extracts are rich in polyphenols, mainly chlorogenic acid, which normalized hyperlipidemic disturbance. The results suggest a potential therapeutic effect of the M. nigra leaves infusion on dislipidemic condition and related oxidative stress.

PMID:
29236863
DOI:
10.1590/0001-3765201720160660
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Scientific Electronic Library Online
Loading ...
Support Center