Format

Send to

Choose Destination
Apoptosis. 2018 Jan;23(1):41-53. doi: 10.1007/s10495-017-1435-6.

Identifying and monitoring neurons that undergo metamorphosis-regulated cell death (metamorphoptosis) by a neuron-specific caspase sensor (Casor) in Drosophila melanogaster.

Author information

1
Laboratory of Neurogenetics, Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA.
2
Department of Biological Science, Mokpo National University, Muan-gun, Jeonnam, Republic of Korea.
3
Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
4
Laboratory of Neurogenetics, Department of Biochemistry and Cellular and Molecular Biology and NeuroNet Research Center, University of Tennessee, Knoxville, TN, 37996, USA. jhpark@utk.edu.

Abstract

Activation of caspases is an essential step toward initiating apoptotic cell death. During metamorphosis of Drosophila melanogaster, many larval neurons are programmed for elimination to establish an adult central nervous system (CNS) as well as peripheral nervous system (PNS). However, their neuronal functions have remained mostly unknown due to the lack of proper tools to identify them. To obtain detailed information about the neurochemical phenotypes of the doomed larval neurons and their timing of death, we generated a new GFP-based caspase sensor (Casor) that is designed to change its subcellular position from the cell membrane to the nucleus following proteolytic cleavage by active caspases. Ectopic expression of Casor in vCrz and bursicon, two different peptidergic neuronal groups that had been well-characterized for their metamorphic programmed cell death, showed clear nuclear translocation of Casor in a caspase-dependent manner before their death. We found similar events in some cholinergic neurons from both CNS and PNS. Moreover, Casor also reported significant caspase activities in the ventral and dorsal common excitatory larval motoneurons shortly after puparium formation. These motoneurons were previously unknown for their apoptotic fate. Unlike the events seen in the neurons, expression of Casor in non-neuronal cell types, such as glial cells and S2 cells, resulted in the formation of cytoplasmic aggregates, preventing its use as a caspase sensor in these cell types. Nonetheless, our results support Casor as a valuable molecular tool not only for identifying novel groups of neurons that become caspase-active during metamorphosis but also for monitoring developmental timing and cytological changes within the dying neurons.

KEYWORDS:

Bursicon; Corazonin; Drosophila CNS; Metamorphoptosis; Programmed cell death

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center