Format

Send to

Choose Destination
Appl Microbiol Biotechnol. 2018 Feb;102(3):1075-1083. doi: 10.1007/s00253-017-8683-9. Epub 2017 Dec 8.

Microbial ecology of the Agaricus bisporus mushroom cropping process.

Author information

1
Department of Agriculture, Food and the Marine, Celbridge, Co. Kildare, Ireland. conorfmcgee@gmail.com.

Abstract

Agaricus bisporus is the most widely cultivated mushroom species in the world. Cultivation is commenced by inoculating beds of semi-pasteurised composted organic substrate with a pure spawn of A. bisporus. The A. bisporus mycelium subsequently colonises the composted substrate by degrading the organic material to release nutrients. A layer of peat, often called "casing soil", is laid upon the surface of the composted substrate to induce the development of the mushroom crop and maintain compost environmental conditions. Extensive research has been conducted investigating the biochemistry and genetics of A. bisporus throughout the cultivation process; however, little is currently known about the wider microbial ecology that co-inhabits the composted substrate and casing layers. The compost and casing microbial communities are known to play important roles in the mushroom production process. Microbial species present in the compost and casing are known for (1) being an important source of nitrogen for the A. bisporus mycelium, (2) releasing sugar residues through the degradation of the wheat straw in the composted substrate, (3) playing a critical role in inducing development of the A. bisporus fruiting bodies and (4) acting as pathogens by parasitising the mushroom mycelium/crop. Despite a long history of research into the mushroom cropping process, an extensive review of the microbial communities present in the compost and casing has not as of yet been undertaken. The aim of this review is to provide a comprehensive summary of the literature investigating the compost and casing microbial communities throughout cultivation of the A. bisporus mushroom crop.

KEYWORDS:

Agaricus bisporus; Bacteria; Casing; Compost; Fungi; Microbial ecology

PMID:
29222576
DOI:
10.1007/s00253-017-8683-9
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center