Format

Send to

Choose Destination
Trends Cell Biol. 2018 Mar;28(3):237-253. doi: 10.1016/j.tcb.2017.10.008. Epub 2017 Dec 5.

Epigenome in Early Mammalian Development: Inheritance, Reprogramming and Establishment.

Author information

1
Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
2
Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China. Electronic address: xiewei121@tsinghua.edu.cn.

Abstract

Drastic epigenetic reprogramming takes place during preimplantation development, leading to the conversion of terminally differentiated gametes to a totipotent embryo. Deficiencies in remodeling of the epigenomes can cause severe developmental defects, including embryonic lethality. However, how chromatin modifications and chromatin organization are reprogrammed upon fertilization in mammals has long remained elusive. Here, we review recent progress in understanding how the epigenome is dynamically regulated during early mammalian development. The latest studies, including many from genome-wide perspectives, have revealed unusual principles of reprogramming for histone modifications, chromatin accessibility, and 3D chromatin architecture. These advances have shed light on the regulatory network controlling the earliest development and maternal-zygotic transition.

PMID:
29217127
DOI:
10.1016/j.tcb.2017.10.008
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center