Send to

Choose Destination
PLoS One. 2017 Dec 7;12(12):e0188471. doi: 10.1371/journal.pone.0188471. eCollection 2017.

Shift toward greater pathologic post-myocardial infarction remodeling with loss of the adaptive hypertrophic signaling of alpha1 adrenergic receptors in mice.

Author information

Cardiothoracic Translational Research Laboratory, University of California San Francisco, San Francisco, California, United States of America.
Division of Cardiology, Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America.



We have hypothesized that post-infarction cardiac remodeling can be influenced by shifts in the balance between intracellular mediators of "pathologic" and "physiologic" hypertrophy. Although alpha1 adrenergic receptors (alpha1-ARs) mediate pro-adaptive hypertrophy during pressure overload, little is known about their role or downstream mediators after myocardial infarction.


We performed loss-of-function experiments via coronary ligation in alpha1A-AR knockout (AKO) mice. Post-myocardial infarction (MI) remodeling was evaluated via echocardiography, quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis of cardiac fetal gene expression, histologic analysis of myocyte size, post-MI fibrosis and apoptosis, and Western blot analysis of apoptotic regulators.


Alpha1A-AR knockout paradoxically increased post-MI hypertrophy compared to wild type controls (WT), but also increased ventricular dilatation, fibrosis, apoptosis, and 4-week post-MI mortality (64% in AKO vs. 25% in WT, P = 0.02), suggesting a shift toward greater pathologic hypertrophy in the absence of pro-adaptive alpha1A effects. alpha1A-AR knockout increased phospho-p38 levels in the pre-MI myocardium compared to WT (0.55 ± 0.16 vs. 0.03 ± 0.01, P<0.05) but decreased phospho-ERK1/2 post-MI (0.49 ± 0.35 arbitrary units vs. 1.55 ± 0.43 in WT, P<0.05). Furthermore, expression of pro-apoptotic factor Bax was increased (1.19 ± 0.15 vs. 0.78 ± 0.08, P<0.05) and expression of anti-apoptotic factors Bcl2 was decreased (0.26 ± 0.01 vs. 0.55 ± 0.06, P<0.01) compared to WT.


Alpha1A-AR provides an important counterbalance to pathologic pathways during post-MI remodeling that may be mediated through ERK1/2 signaling; these observations provide support for further development of an alpha1A-AR/ERK-based molecular intervention for this chronic, often fatal disease.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center