Format

Send to

Choose Destination
MAGMA. 2018 Jun;31(3):457-467. doi: 10.1007/s10334-017-0667-3. Epub 2017 Dec 5.

Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

Author information

1
Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, USA. Chengcheng.Zhu@ucsf.edu.
2
Department of Radiology, Changhai Hospital, Shanghai, China.
3
Department of Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, USA.
4
Siemens Healthcare, Erlangen, Germany.
5
Siemens Healthcare, San Francisco, CA, USA.
6
Department of Radiology, Changhai Hospital, Shanghai, China. cjr.lujianping@vip.163.com.

Abstract

OBJECTIVE:

Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging.

MATERIALS AND METHODS:

A 3D accelerated T1-weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded.

RESULTS:

The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR.

CONCLUSION:

In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T1-weighted SPACE while maintaining good image quality.

KEYWORDS:

3D black blood SPACE; Aneurysm; Atherosclerosis; Compressed sensing; Intracranial vessel wall MRI

PMID:
29209856
PMCID:
PMC5976530
DOI:
10.1007/s10334-017-0667-3
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center