Format

Send to

Choose Destination
Plant J. 2018 Feb;93(4):771-780. doi: 10.1111/tpj.13795. Epub 2018 Jan 14.

The role of water in plant-microbe interactions.

Aung K1, Jiang Y1,2, He SY1,3,4,5.

Author information

1
Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA.
2
Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
3
Howard Hughes Medical Institute, Michigan State University, East Lansing, Michigan, 48824, USA.
4
Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA.
5
Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA.

Abstract

Throughout their life plants are associated with various microorganisms, including commensal, symbiotic and pathogenic microorganisms. Pathogens are genetically adapted to aggressively colonize and proliferate in host plants to cause disease. However, disease outbreaks occur only under permissive environmental conditions. The interplay between host, pathogen and environment is famously known as the 'disease triangle'. Among the environmental factors, rainfall events, which often create a period of high atmospheric humidity, have repeatedly been shown to promote disease outbreaks in plants, suggesting that the availability of water is crucial for pathogenesis. During pathogen infection, water-soaking spots are frequently observed on infected leaves as an early symptom of disease. Recent studies have shown that pathogenic bacteria dedicate specialized virulence proteins to create an aqueous habitat inside the leaf apoplast under high humidity. Water availability in the apoplastic environment, and probably other associated changes, can determine the success of potentially pathogenic microbes. These new findings reinforce the notion that the fight over water may be a major battleground between plants and pathogens. In this article, we will discuss the role of water availability in host-microbe interactions, with a focus on plant-bacterial interactions.

KEYWORDS:

high humidity; plant disease; plant immunity; stomata; water-soaking

PMID:
29205604
PMCID:
PMC5849256
DOI:
10.1111/tpj.13795
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center