Send to

Choose Destination
Stem Cells Dev. 2018 Feb 1;27(3):199-206. doi: 10.1089/scd.2017.0198. Epub 2018 Jan 3.

Altered Bioenergetic Profile in Umbilical Cord and Amniotic Mesenchymal Stem Cells from Newborns of Obese Women.

Author information

1 CEINGE Biotecnologie Avanzate S.C.a R.L. , Naples, Italy .
2 Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II , Naples, Italy .
3 Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope," Naples, Italy .
4 Istituto di Endocrinologia e Oncologia Sperimentale , Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy .
5 Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli Federico II , Naples, Italy .
6 IRCCS SDN , Naples, Italy .


Nutritional imbalance and metabolic alterations associated with maternal obesity during pregnancy predispose offspring to obesity and/or to type 2 diabetes, but the mechanisms underlying these effects are still obscure. In this context, we evaluated whether the two main energy-producing pathways (glycolysis and mitochondrial oxidative phosphorylation) are impaired in obesity during pregnancy thus contributing to metabolic intrauterine alterations. Specifically, we studied metabolic abnormalities in the intrauterine life of newborns using stem cells isolated from amnion and umbilical cord (hA- and hUC-MSCs). We isolated, at delivery, neonatal hUC-MSCs from 13 obese (Ob) and 10 normal weight control (Co) women (prepregnancy body mass index >30 and <25 kg/m2, respectively) and hA-MSCs from a subgroup of 3 Ob and 3 Co women. The hUC-MSC immunophenotype was characterized by flow cytometry. The extracellular acidification rate and oxygen consumption rate, which are indicators of glycolysis and mitochondrial respiration, respectively, were measured using the Seahorse XFe96 analyzer. Basal glycolysis (Co: 27.5 ± 2.9; Ob: 21.3 ± 2.3 mpH/min) and glycolytic capacity (Co: 65.3 ± 1.2; Ob: 55.0 ± 0.3 mpH/min) were significantly lower in Ob-hUC-MSCs versus Co-hUC-MSCs (P < 0.05 and P < 0.0001, respectively). Mitochondrial basal respiration (Co: 46.9 ± 0.7; Ob: 32.6 ± 0.8 pmol/min), ATP-linked respiration (Co: 29.3 ± 1.9; Ob: 20.1 ± 0.3 pmol/min), and maximal respiration (Co: 75.2 ± 5.3; Ob: 50.5 ± 4.1 pmol/min) were significantly (P < 0.0001) lower in Ob-hUC-MSCs versus Co-hUC-MSCs. Similarly, bioenergetic profiles of the subgroup of Ob-hA-MSCs differed from those of Co-hA-MSCs. These results demonstrate that the bioenergetic performance of Ob-h-MSCs is lower in basal conditions and in conditions of increased energy demand compared with Co-h-MSCs. In conclusion, we describe a new mechanism whereby obesity alters intrauterine metabolism. This process could concur to predispose offspring to metabolic diseases in adult life.


MSC; amniotic stem cells; placenta

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center