Format

Send to

Choose Destination
Free Radic Biol Med. 2018 May 1;119:108-114. doi: 10.1016/j.freeradbiomed.2017.11.024. Epub 2017 Dec 2.

Circadian clock-mediated regulation of blood pressure.

Author information

1
Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States.
2
Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States; Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States. Electronic address: Michelle.Gumz@medicine.ufl.edu.

Abstract

Most bodily functions vary over the course of a 24h day. Circadian rhythms in body temperature, sleep-wake cycles, metabolism, and blood pressure (BP) are just a few examples. These circadian rhythms are controlled by the central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral clocks located throughout the body. Light and food cues entrain these clocks to the time of day and this synchronicity contributes to the regulation of a variety of physiological processes with effects on overall health. The kidney, brain, nervous system, vasculature, and heart have been identified through the use of mouse models and clinical trials as peripheral clock regulators of BP. The dysregulation of this circadian pattern of BP, with or without hypertension, is associated with increased risk for cardiovascular disease. The mechanism of this dysregulation is unknown and is a growing area of research. In this review, we highlight research of human and mouse circadian models that has provided insight into the roles of these molecular clocks and their effects on physiological functions. Additional tissue-specific studies of the molecular clock mechanism are needed, as well as clinical studies including more diverse populations (different races, female patients, etc.), which will be critical to fully understand the mechanism of circadian regulation of BP. Understanding how these molecular clocks regulate the circadian rhythm of BP is critical in the treatment of circadian BP dysregulation and hypertension.

KEYWORDS:

Blood pressure; Circadian rhythm; Humans; Hypertension; Mouse; Non-dipping

PMID:
29198725
PMCID:
PMC5910276
[Available on 2019-05-01]
DOI:
10.1016/j.freeradbiomed.2017.11.024

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center