Send to

Choose Destination
J Am Chem Soc. 2017 Dec 13;139(49):17779-17782. doi: 10.1021/jacs.7b11491. Epub 2017 Dec 4.

Reconstructing the Surface of Gold Nanoclusters by Cadmium Doping.

Author information

Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States.
College of Natural Sciences and Mathematics, University of Toledo , Toledo, Ohio 43606, United States.
Department of Chemical Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States.
Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States.


Atomically precise metal nanoclusters with tailored surface structures are important for both fundamental studies and practical applications. The development of new methods for tailoring the surface structure in a controllable manner has long been sought. In this work, we report surface reconstruction induced by cadmium doping into the [Au23(SR)16]- (R = cyclohexyl) nanocluster, in which two neighboring surface Au atomic sites "coalesce" into one Cd atomic site and, accordingly, a new bimetal nanocluster, [Au19Cd2(SR)16]-, is produced. Interestingly, a Cd(S-Au-S)3 "paw-like" surface motif is observed for the first time in nanocluster structures. In such a motif, the Cd atom acts as a junction which connects three monomeric -S-Au-S- motifs. Density functional theory calculations are performed to understand the two unique Cd locations. Furthermore, we demonstrate different doping modes when the [Au23(SR)16]- nanocluster is doped with different metals (Cu, Ag), including (i) simple substitution and (ii) total structure transformation, as opposed to surface reconstruction for Cd doping. This work greatly expands doping chemistry for tailoring the structures of nanoclusters and is expected to open new avenues for designing nanoclusters with novel surface structures using different dopants.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center