Format

Send to

Choose Destination
Mol Ther. 2018 Feb 7;26(2):510-523. doi: 10.1016/j.ymthe.2017.10.017. Epub 2017 Oct 26.

Mapping the Structural Determinants Required for AAVrh.10 Transport across the Blood-Brain Barrier.

Author information

1
Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
2
Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
3
Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address: aravind@med.unc.edu.

Abstract

Effective gene delivery to the CNS by intravenously administered adeno-associated virus (AAV) vectors requires crossing the blood-brain barrier (BBB). To achieve therapeutic CNS transgene expression, high systemic vector doses are often required, which poses challenges such as scale-up costs and dose-dependent hepatotoxicity. To improve the specificity and efficiency of CNS gene transfer, a better understanding of the structural features that enable AAV transit across the BBB is needed. We generated a combinatorial domain swap library using AAV1, a serotype that does not traverse the vasculature, and AAVrh.10, which crosses the BBB in mice. We then screened individual variants by phylogenetic and structural analyses and subsequently conducted systemic characterization in mice. Using this approach, we identified key clusters of residues on the AAVrh.10 capsid that enabled transport across the brain vasculature and widespread neuronal transduction in mice. Through rational design, we mapped a minimal footprint from AAVrh.10, which, when grafted onto AAV1, confers the aforementioned CNS phenotype while diminishing vascular and hepatic transduction through an unknown mechanism. Functional mapping of this capsid surface footprint provides a roadmap for engineering synthetic AAV capsids for efficient CNS gene transfer with an improved safety profile.

KEYWORDS:

AAV; blood-brain barrier; neurotropic

PMID:
29175157
PMCID:
PMC5835146
DOI:
10.1016/j.ymthe.2017.10.017
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center