Send to

Choose Destination
Nano Lett. 2017 Dec 13;17(12):7487-7493. doi: 10.1021/acs.nanolett.7b03399. Epub 2017 Nov 29.

Deciphering Charging Status, Absolute Quantum Efficiency, and Absorption Cross Section of Multicarrier States in Single Colloidal Quantum Dots.

Author information

School of Physics, Huazhong University of Science and Technology , Luoyu Road 1037, Wuhan 430074, People's Republic of China.
Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University , Hangzhou 310027, China.


Upon photo- or electrical-excitation, colloidal quantum dots (QDs) are often found in multicarrier states due to multiphoton absorption, photocharging, or imbalanced carrier injection of the QDs. While many of these multicarrier states are observed in single-dot spectroscopy, their properties are not well studied due to random charging/discharging, emission intensity intermittency, and uncontrolled surface defects of single QDs. Here we report in situ deciphering of the charging status, precisely assessing the absorption cross section, and determining the absolute emission quantum yield of monoexciton and biexciton states for neutral, positively charged, and negatively charged single core/shell CdSe/CdS QDs. We uncover very different photon statistics of the three charge states in single QDs and unambiguously identify their charge signs together with the information on their photoluminescence decay dynamics. We then show their distinct photoluminescence saturation behaviors and evaluate the absolute values of absorption cross sections and quantum efficiencies of monoexcitons and biexcitons. We demonstrate that the addition of an extra hole or electron in a QD not only changes its emission properties but also varies its absorption cross section.


Colloidal quantum dots; absorption cross section; charge states; exciton; quantum efficiency; single-dot spectroscopy

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center