A dysbiotic mycobiome dominated by Candida albicans is identified within oral squamous-cell carcinomas

J Oral Microbiol. 2017 Oct 27;9(1):1385369. doi: 10.1080/20002297.2017.1385369. eCollection 2017.

Abstract

The aim of this study was to characterize the mycobiome associated with oral squamous-cell carcinoma (OSCC). DNA was extracted from 52 tissue biopsies (cases: 25 OSCC; controls: 27 intra-oral fibro-epithelial polyps [FEP]) and sequenced for the fungal internal transcribed spacer 2 region using Illumina™ 2 x300bp chemistry. Merged reads were classified to species level using a BLASTN-algorithm with UNITE's named species sequences as reference. Downstream analyses were performed using QIIME™ and linear discriminant analysis effect size. A total of 364 species representing 160 genera and two phyla (Ascomycota and Basidiomycota) were identified, with Candida and Malassezia making up 48% and 11% of the average mycobiome, respectively. However, only five species and four genera were detected in ≥50% of the samples. The species richness and diversity were significantly lower in OSCC. Genera Candida, Hannaella, and Gibberella were overrepresented in OSCC; Alternaria and Trametes were more abundant in FEP. Species-wise, Candida albicans, Candida etchellsii, and a Hannaella luteola-like species were enriched in OSCC, while aHanseniaspora uvarum-like species, Malassezia restricta, and Aspergillus tamarii were the most significantly abundant in FEP. In conclusion, a dysbiotic mycobiome dominated by C. albicans was found in association with OSCC, a finding worth further investigation.

Keywords: DNA ribosomal spacer; Fungi; carcinoma; high-throughput nucleotide sequencing; microbiome; mouth; mycobiome; squamous cell.

Grants and funding

This work was supported by the The Australian Research Council; Self-finance (M.P. and I.P.); Griffith University Higher Degree Scholarships for international students.