Send to

Choose Destination
Mol Psychiatry. 2018 Jan;23(1):26-35. doi: 10.1038/mp.2017.225. Epub 2017 Nov 14.

Engaging homeostatic plasticity to treat depression.

Author information

U.S. Army Institute of Surgical Research, Burns Injury and Regenerative Medicine, Fort Sam Houston, San Antonio, TX, USA.
Department of Physiology and Pharmacology, Wake Forest Health Sciences, Winston-Salem, NC, USA.


Major depressive disorder (MDD) is a complex and heterogeneous mood disorder, making it difficult to develop a generalized, pharmacological therapy that is effective for all who suffer from MDD. Through the fortuitous discovery of N-methyl-D-aspartate receptor (NMDAR) antagonists as effective antidepressants, we have gained key insights into how antidepressant effects can be produced at the circuit and molecular levels. NMDAR antagonists act as rapid-acting antidepressants such that relief from depressive symptoms occurs within hours of a single injection. The mode of action of NMDAR antagonists seemingly relies on their ability to activate protein-synthesis-dependent homeostatic mechanisms that restore top-down excitatory connections. Recent evidence suggests that NMDAR antagonists relieve depressive symptoms by forming new synapses resulting in increased excitatory drive. This event requires the mammalian target of rapamycin complex 1 (mTORC1), a signaling pathway that regulates synaptic protein synthesis. Herein, we review critical studies that shed light on the action of NMDAR antagonists as rapid-acting antidepressants and how they engage a neuron's or neural network's homeostatic mechanisms to self-correct. Recent studies notably demonstrate that a shift in γ-amino-butyric acid receptor B (GABABR) function, from inhibitory to excitatory, is required for mTORC1-dependent translation with NMDAR antagonists. Finally, we discuss how GABABR activation of mTORC1 helps resolve key discrepancies between rapid-acting antidepressants and local homeostatic mechanisms.


Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center