Format

Send to

Choose Destination
Nat Commun. 2017 Nov 14;8(1):1477. doi: 10.1038/s41467-017-01432-4.

A primacy code for odor identity.

Author information

1
NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, 10016, USA.
2
Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
3
NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, 10016, USA. rinberg@nyu.edu.
4
Center for Neural Science, New York University, New York, NY, 10003, USA. rinberg@nyu.edu.

Abstract

Humans can identify visual objects independently of view angle and lighting, words independently of volume and pitch, and smells independently of concentration. The computational principles underlying invariant object recognition remain mostly unknown. Here we propose that, in olfaction, a small and relatively stable set comprised of the earliest activated receptors forms a code for concentration-invariant odor identity. One prediction of this "primacy coding" scheme is that decisions based on odor identity can be made solely using early odor-evoked neural activity. Using an optogenetic masking paradigm, we define the sensory integration time necessary for odor identification and demonstrate that animals can use information occurring <100 ms after inhalation onset to identify odors. Using multi-electrode array recordings of odor responses in the olfactory bulb, we find that concentration-invariant units respond earliest and at latencies that are within this behaviorally-defined time window. We propose a computational model demonstrating how such a code can be read by neural circuits of the olfactory system.

PMID:
29133907
PMCID:
PMC5684307
DOI:
10.1038/s41467-017-01432-4
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center