Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13336-13344. doi: 10.1073/pnas.1700103114. Epub 2017 Nov 13.

Abstract

We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

Keywords: amorphous ice; liquid–liquid transition; no-man’s land; supercooled liquids; water.

Publication types

  • Research Support, Non-U.S. Gov't