Format

Send to

Choose Destination
Sci Rep. 2017 Nov 10;7(1):15248. doi: 10.1038/s41598-017-15649-2.

The primary cilium is necessary for the differentiation and the maintenance of human adipose progenitors into myofibroblasts.

Author information

1
Université Côte d'Azur, CNRS UMR7277, Inserm U1091, IBV, Nice, France.
2
Université Côte d'Azur, Inserm UMR1065, C3M, Nice, France.
3
Université Côte d'Azur, CNRS UMR7277, Inserm U1091, IBV, Nice, France. peraldi@unice.fr.

Abstract

The primary cilium is an organelle, present at the cell surface, with various biological functions. We, and others, have shown that it plays a role in the differentiation of adipose progenitors (APs) into adipocytes. APs can also differentiate into myofibroblasts when treated with TGF-β1. Several components of the TGF-β1 pathway are located within the cilium suggesting a function for this organelle in AP myofibrogenesis. We studied differentiation of APs into myofibroblasts in two human models: APs of the adipose tissue (aAPs) and APs resident in the skeletal muscles (mAPs). We showed that, in vivo, myofibroblasts within muscles of patients with Duchenne Muscular Dystrophy were ciliated. In vitro, myofibroblasts derived from APs maintained a functional primary cilium. Using HPI4, a small molecule that inhibits ciliogenesis, and siRNA against Kif-3A, we provide evidence that the primary cilium is necessary both for the differentiation of APs into myofibroblasts and the maintenance of the phenotype. Disruption of the primary cilium inhibited TGF-β1-signalisation providing a molecular mechanism by which the cilium controls myofibroblast differentiation. These data suggest that myofibroblasts from various origins are controlled differently by their primary cilium.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center