Ground Juniperus pinchotii and urea in supplements fed to Rambouillet ewe lambs Part 2: Ewe lamb rumen microbial communities

J Anim Sci. 2017 Oct;95(10):4587-4599. doi: 10.2527/jas2017.1731.

Abstract

This study evaluated effects of ground redberry juniper () and urea in dried distillers grains with solubles-based supplements fed to Rambouillet ewe lambs ( = 48) on rumen physiological parameters and bacterial diversity. In a randomized study (40 d), individually-penned lambs were fed ground sorghum-sudangrass hay and of 1 of 8 supplements (6 lambs/treatment; 533 g/d; as-fed basis) in a 4 × 2 factorial design with 4 concentrations of ground juniper (15%, 30%, 45%, or 60% of DM) and 2 levels of urea (1% or 3% of DM). Increasing juniper resulted in minor changes in microbial β-diversity (PERMANOVA, pseudo F = 1.33, = 0.04); however, concentrations of urea did not show detectable broad-scale differences at phylum, family, or genus levels according to ANOSIM ( > 0.05), AMOVA ( > 0.10), and PERMANOVA ( > 0.05). Linear discriminant analysis indicated some genera were specific to certain dietary treatments ( < 0.05), though none of these genera were present in high abundance; high concentrations of juniper were associated with and , low concentrations of urea were associated with , and high concentrations of urea were associated with and . were decreased by juniper and urea. , , and increased with juniper and were positively correlated (Spearman's, < 0.05) with each other but not to rumen factors, suggesting a symbiotic interaction. Overall, there was not a juniper × urea interaction for total VFA, VFA by concentration or percent total, pH, or ammonia ( 0.29). When considering only percent inclusion of juniper, ruminal pH and proportion of acetic acid linearly increased ( < 0.001) and percentage of butyric acid linearly decreased ( = 0.009). Lamb ADG and G:F were positively correlated with (Spearman's, < 0.05) and negatively correlated with Synergistaceae, the BS5 group, and Lentisphaerae. Firmicutes were negatively correlated with serum urea nitrogen, ammonia, total VFA, total acetate, and total propionate. Overall, modest differences in bacterial diversity among treatments occurred in the abundance or evenness of several OTUs, but there was not a significant difference in OTU richness. As diversity was largely unchanged, the reduction in ADG and lower-end BW was likely due t* reduced DMI rather than a reduction in microbial fermentative ability.

MeSH terms

  • Ammonia / analysis
  • Animal Feed
  • Animals
  • Blood Urea Nitrogen
  • Diet / veterinary
  • Dietary Supplements*
  • Edible Grain
  • Fatty Acids, Volatile / analysis
  • Female
  • Fermentation
  • Juniperus*
  • Random Allocation
  • Rumen / metabolism
  • Rumen / microbiology
  • Sheep / microbiology*
  • Sheep / physiology
  • Urea / administration & dosage*

Substances

  • Fatty Acids, Volatile
  • Ammonia
  • Urea