Format

Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 1989 Jan 15;49(2):309-13.

Transport and metabolism of 1-beta-D-arabinofuranosylcytosine in human ovarian adenocarcinoma cells.

Author information

1
Department of Haematology, Austin Hospital, Heidelberg, Melbourne, Australia.

Abstract

1-beta-D-Arabinofuranosylcytosine (araC) is an effective drug in the i.p. therapy of ovarian carcinoma but little is known of its transport and metabolism in this tumor. Influx of araC at 1 microM into cultured human ovarian carcinoma cells (CI 80-13S) was largely inhibited by nanomolar concentrations of the nucleoside transport inhibitor, nitrobenzylthioinosine, while the residual influx (approximately 10%) was inhibited only by micromolar concentrations of nitrobenzylthioinosine. There was a two fold greater density of specific [3H]nitrobenzylthioinosine binding to the nucleoside transporters on the ovarian than on cultured human leukemic cells (RC2a). Calculated turnover rates of the nucleoside transporter for 1 microM araC were 5-fold less in ovarian than in leukemic cells. The major metabolic product of araC was 1-beta-D-arabinofuranosylcytosine 5'-triphosphate (araCTP) which accumulated in the ovarian cells to levels half those achieved in the leukemic cells. AraC was the major product of araCTP degradation in ovarian cells consistent with a pathway (araCTP--------araCMP----araC) which is different from that previously found in leukemic cells (araCTP--------araCMP----araUMP----araU). Despite these differences, ovarian carcinoma cells show substantial accumulation of araCTP from extracellular araC.

PMID:
2910450
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center