Format

Send to

Choose Destination
Redox Biol. 2018 Apr;14:450-464. doi: 10.1016/j.redox.2017.10.014. Epub 2017 Oct 18.

Oxidative stress and the amyloid beta peptide in Alzheimer's disease.

Author information

1
LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France.
2
Department of Metabolic Biochemistry, La Pitié Salpêtrière-Charles Foix University Hospital (AP-HP), Paris, France; Department of Biochemistry, Faculty of Pharmacy, Paris Descartes University, Paris, France; CNRS UMR8258 - INSERM U1022, Faculty of Pharmacy, Paris Descartes University, Paris, France.
3
Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR 7177), University of Strasbourg, 4 rue B. Pascal, 67081 Strasbourg Cedex, France.
4
LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France. Electronic address: fabrice.collin@univ-tlse3.fr.

Abstract

Oxidative stress is known to play an important role in the pathogenesis of a number of diseases. In particular, it is linked to the etiology of Alzheimer's disease (AD), an age-related neurodegenerative disease and the most common cause of dementia in the elderly. Histopathological hallmarks of AD are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the amyloid-beta peptide (Aβ) in aggregated form along with metal-ions such as copper, iron or zinc. Redox active metal ions, as for example copper, can catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-β (Aβ). The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative damage on both the Aβ peptide itself and on surrounding molecule (proteins, lipids, …). This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage. In addition, the implication of metal ions in AD, their interaction with the Aβ peptide and redox properties leading to ROS production are discussed, along with both in vitro and in vivo oxidation of the Aβ peptide, at the molecular level.

KEYWORDS:

Amyloid beta peptide; Metal-ions; Oxidative damages; Oxidative stress; Reactive oxygen species

PMID:
29080524
PMCID:
PMC5680523
DOI:
10.1016/j.redox.2017.10.014
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center