Format

Send to

Choose Destination
Biomaterials. 2018 Jan;153:85-101. doi: 10.1016/j.biomaterials.2017.06.022. Epub 2017 Jun 21.

High-throughput approaches for screening and analysis of cell behaviors.

Author information

1
Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Center for Biomaterials, Korea Institute of Science and Technology, 14 Hwarang-ro, Seongbuk-gu, Seoul, 02792, South Korea.
2
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
3
Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
4
Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA, 01854-2827, USA.
5
Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
6
Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
7
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA; National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA. Electronic address: eben.alsberg@case.edu.
8
Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA; Department of Physics, King Abdulaziz University, Jeddah, 21569, Saudi Arabia. Electronic address: alik@bwh.harvard.edu.

Abstract

The rapid development of new biomaterials and techniques to modify them challenge our capability to characterize them using conventional methods. In response, numerous high-throughput (HT) strategies are being developed to analyze biomaterials and their interactions with cells using combinatorial approaches. Moreover, these systematic analyses have the power to uncover effects of delivered soluble bioactive molecules on cell responses. In this review, we describe the recent developments in HT approaches that help identify cellular microenvironments affecting cell behaviors and highlight HT screening of biochemical libraries for gene delivery, drug discovery, and toxicological studies. We also discuss HT techniques for the analyses of cell secreted biomolecules and provide perspectives on the future utility of HT approaches in biomedical engineering.

KEYWORDS:

Biomaterial screening; Biomolecule delivery; Cell-biomaterial interactions; Cellular microenvironments; High-throughput biosensor; High-throughput system

PMID:
29079207
PMCID:
PMC5702937
[Available on 2019-01-01]
DOI:
10.1016/j.biomaterials.2017.06.022

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center