Format

Send to

Choose Destination

Morphine tolerance and nonspecific subsensitivity of the longitudinal muscle myenteric plexus preparation of the guinea-pig to inhibitory agonists.

Author information

1
Department of Pharmacology and Toxicology, West Virginia University Health Sciences Center, Morgantown 26506.

Abstract

1. The sensitivity of the longitudinal smooth muscle/myenteric plexus (LM/MP) to agonists which reduce the amplitude of neurogenic contractions was studied in preparations obtained from animals implanted with either placebo or morphine (75 mg/pellet) pellets 7 days prior. 2. Tolerance or subsensitivity to morphine was observed following chronic treatment with morphine and was revealed as a rightward shift of the concentration-response curve to morphine. The degree of tolerance decayed modestly with time after removal from a morphine containing environment suggesting a time dependence for the loss of subsensitivity to morphine. 3. LM/MP preparations from animals pretreated with morphine also developed subsensitivity to the inhibitory effects of the purine analogue, 2-chloroadenosine. Subsensitivity to 2-chloroadenosine was seen as a parallel rightward shift of the concentration-response curve in morphine-tolerant preparations. The magnitude of the loss in sensitivity was comparable to that observed to morphine. 4. A reduction in sensitivity of the LM/MP following chronic treatment with morphine was also observed to the inhibitory effects of the alpha2 adrenoceptor agonists, clonidine and xylazine. In contrast to the results obtained with morphine and 2-chloroadenosine, the development of subsensitivity to alpha2 adrenoceptor agonists was characterized by a marked reduction in slope and a depression of the maximum response. 5. These data suggest that myenteric neurons possess spare receptors for morphine and 2-chloroadenosine but not for clonidine and xylazine. Furthermore, the studies support the idea that tolerance is associated with a general cellular change or adaptation which impacts on all of these inhibitory substances in such a way as to reduce their efficacy.

PMID:
2907611
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center