Format

Send to

Choose Destination
J Chem Eng Data. 2017 May 11;62(5):1559-1569. doi: 10.1021/acs.jced.7b00104. Epub 2017 Apr 24.

Approaches for calculating solvation free energies and enthalpies demonstrated with an update of the FreeSolv database.

Author information

1
Department of Chemistry, University of California, Irvine, Department of Pharmaceutical Sciences, University of California, Irvine, Scientific Computing Department, STFC, UK, Computational and Systems Biology Program, Sloan Kettering Institute, Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, and Departments of Pharmaceutical Sciences and Chemistry, University of California, Irvine.

Abstract

Solvation free energies can now be calculated precisely from molecular simulations, providing a valuable test of the energy functions underlying these simulations. Here, we briefly review "alchemical" approaches for calculating the solvation free energies of small, neutral organic molecules from molecular simulations, and illustrate by applying them to calculate aqueous solvation free energies (hydration free energies). These approaches use a non-physical pathway to compute free energy differences from a simulation or set of simulations and appear to be a particularly robust and general-purpose approach for this task. We also present an update (version 0.5) to our FreeSolv database of experimental and calculated hydration free energies of neutral compounds and provide input files in formats for several simulation packages. This revision to FreeSolv provides calculated values generated with a single protocol and software version, rather than the heterogeneous protocols used in the prior version of the database. We also further update the database to provide calculated enthalpies and entropies of hydration and some experimental enthalpies and entropies, as well as electrostatic and nonpolar components of solvation free energies.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center