Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Oncol. 2017 Dec;51(6):1929-1940. doi: 10.3892/ijo.2017.4151. Epub 2017 Oct 10.

Functional analysis of HOXA10 and HOXB4 in human medulloblastoma cell lines.

Author information

1
Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
2
Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
3
Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
4
Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
5
Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
6
Division of Pediatric Neurosurgery of the Department of Surgery and Anatomy, University Hospital of Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.
7
Center for Gene Therapy, City of Hope Alpha Stem Cell Clinic, Duarte, CA 91010, USA.
8
Department of Internal Medicine, University of São Paulo, Av. Bandeirantes, 3900, Monte Alegre 14049-900, Ribeirão Preto, São Paulo, Brazil.

Abstract

Medulloblastoma (MB) is a malignant childhood brain tumor which at molecular level is classified into at least four major subtypes: WNT, SHH, group C and group D differing in response to treatment. Previous studies have associated changes in expression levels and activation of certain HOX genes with MB development. In the present study, we investigate the role of HOX genes in two attributes acquired by tumor cells: migration and proliferation potential, as well as, in vivo tumorigenic potential. We analyzed UW402, UW473, DAOY and ONS-76 human pediatric MB cell lines and cerebellum primary cultures. Two-color microarray-based gene expression analysis was used to identify differentially expressed HOX genes. Among the various HOX genes significantly overexpressed in DAOY and ONS-76 cell lines compared to UW402 and UW473 cell lines, HOXA10 and HOXB4 were selected for further analysis. The expression levels of these HOX genes were validated by real-time PCR. A mouse model was used to study the effect of the HOXA10 and HOXB4 genes on the in vivo tumorigenic potential and the in vitro proliferative and migration potential of MB cell lines. Our results show that the inhibition of HOXA10 in DAOY cell line led to increased in vitro cell migration while in vitro cell proliferation or in vivo tumorigenic potential were unaffected. We also observed that induced expression of HOXB4 in the UW473 cell line significantly reduced in vitro cell proliferation and migration capability of UW473 cells with no effect on the in vivo tumorigenicity. This suggests that HOXA10 plays a role in migration events and the HOXB4 gene is involved in proliferation and migration processes of medulloblastoma cells, however, it appears that these genes are not essential for the tumorigenic process of these cells.

PMID:
29039487
DOI:
10.3892/ijo.2017.4151
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Spandidos Publications
    Loading ...
    Support Center