Format

Send to

Choose Destination
Nucleic Acids Res. 2017 Dec 15;45(22):12700-12714. doi: 10.1093/nar/gkx869.

Tet1 facilitates hypoxia tolerance by stabilizing the HIF-α proteins independent of its methylcytosine dioxygenase activity.

Author information

1
State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
2
The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Science, Wuhan 430072, PR China.
3
The Key laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, 430072, PR China.

Abstract

Because of the requirement of oxygen (O2) to produce energy, aerobic organisms developed mechanisms to protect themselves against a shortage of oxygen in both acute status and chronic status. To date, how organisms tolerate acute hypoxia and the underlying mechanisms remain largely unknown. Here, we identify that Tet1, one member of the ten-eleven translocation (TET) family of methylcytosine dioxygenases, is required for hypoxia tolerance in zebrafish and mice. Tet1-null zebrafish and mice are more sensitive to hypoxic conditions compared with their wild-type siblings. We demonstrate that Tet1 stabilizes hypoxia-inducible factor α (HIF-α) and enhances HIF-α transcription activity independent of its enzymatic activity. In addition, we show that Tet1 modulates HIF-2α and HIF-1α through different mechanisms. Tet1 competes with prolyl hydroxylase protein 2 (PHD2) to bind to HIF-2α, resulting in a reduction of HIF-2α hydroxylation by PHD2. For HIF-1α, however, Tet1 has no effect on HIF-1α hydroxylation, but rather it appears to stabilize the C-terminus of HIF-1α by affecting lysine site modification. Furthermore, we found that Tet1 enhances rather than prevents poly-ubiquitination on HIF-α. Our results reveal a previously unrecognized function of Tet1 independent of its methylcytosine dioxygenase activity in hypoxia signaling.

PMID:
29036334
PMCID:
PMC5727443
DOI:
10.1093/nar/gkx869
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center