Format

Send to

Choose Destination
Cancer Res. 2017 Dec 1;77(23):6746-6758. doi: 10.1158/0008-5472.CAN-17-0930. Epub 2017 Oct 11.

Glutamine Addiction in Kidney Cancer Suppresses Oxidative Stress and Can Be Exploited for Real-Time Imaging.

Author information

1
Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California.
2
South Texas Veterans Health Care System and Cellular and Structural Biology Department, University of Texas Health Science Center, San Antonio, Texas.
3
Lawrence Livermore National Laboratory, Livermore, California.
4
Department of Radiology, University of California, Davis, Sacramento, California.
5
Center for Molecular and Genomic Imaging, University of California, Davis, Davis, California.
6
Division of Hematology and Oncology, Department of Internal Medicine, University of California, Davis, Sacramento, California.
7
Department of Biomedical Engineering, University of California Davis, Davis, California.
8
Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California. rhweiss@ucdavis.edu.
9
Comprehensive Cancer Center, University of California Davis, Sacramento, California.
10
Medical Service, VA Northern California Health Care System, Sacramento, California.

Abstract

Many cancers appear to activate intrinsic antioxidant systems as a means to counteract oxidative stress. Some cancers, such as clear cell renal cell carcinoma (ccRCC), require exogenous glutamine for growth and exhibit reprogrammed glutamine metabolism, at least in part due to the glutathione pathway, an efficient cellular buffering system that counteracts reactive oxygen species and other oxidants. We show here that ccRCC xenograft tumors under the renal capsule exhibit enhanced oxidative stress compared with adjacent normal tissue and the contralateral kidney. Upon glutaminase inhibition with CB-839 or BPTES, the RCC cell lines SN12PM-6-1 (SN12) and 786-O exhibited decreased survival and pronounced apoptosis associated with a decreased GSH/GSSG ratio, augmented nuclear factor erythroid-related factor 2, and increased 8-oxo-7,8-dihydro-2'-deoxyguanosine, a marker of DNA damage. SN12 tumor xenografts showed decreased growth when treated with CB-839. Furthermore, PET imaging confirmed that ccRCC tumors exhibited increased tumoral uptake of 18F-(2S,4R)4-fluoroglutamine compared with the kidney in the orthotopic mouse model. This technique can be utilized to follow changes in ccRCC metabolism in vivo Further development of these paradigms will lead to new treatment options with glutaminase inhibitors and the utility of PET to identify and manage patients with ccRCC who are likely to respond to glutaminase inhibitors in the clinic. Cancer Res; 77(23); 6746-58. ©2017 AACR.

PMID:
29021138
PMCID:
PMC5791889
[Available on 2018-12-01]
DOI:
10.1158/0008-5472.CAN-17-0930
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center