Send to

Choose Destination
Gigascience. 2017 Oct 1;6(10):1-7. doi: 10.1093/gigascience/gix084.

Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies.

Author information

Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, United Kingdom.
Agrosphere, IBG3, Forschungszentrum Jülich, Jülich 52425, Germany.
Earth and Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
InBios, Université de Liège, 4000 Liège, Belgium.


Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping.


QTL analysis; machine learning; plant phenotyping; root

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center